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Abstract. Using the Kubo–Martin–Schwinger (KMS) condition and exchange algebras we
discuss how to compute correlation functions for the conformal exchange field theories. In
particular, we derive the Verlinde algebra from modular invariance of theZ2N conformal field
theories. We also show how the Verlinde matrices can be related to the KMS matrices.

1. Introduction

The concept of exchange algebra has been introduced in the context of two-dimensional
conformal field theories to characterize the algebraic structure of the light-cone interpolating
fields. More precisely it states how these fields can be braided. The braid matrices satisfy
simple equations, one of which being a Yang–Baxter type equation. Rehren [1] showed
with a simple calculation how these structural equations contain a good deal of information.
Indeed, using an additional hypothesis, he was able to calculate the braiding properties of
some basic fields and to obtain the spectrum of both the minimal models and WZW theories.
His hypothesis was the existence of a fieldα whose fusion rules, for some labelling of the
conformal families, are [α][ l] = [l − 1] ⊕ [l + 1] for l ∈ Z.

In the present paper we apply these ideas to another set of simple CFTs namely theZ2N

conformal field theories [2].
The outline of this paper is as follows. In section 2 we present the Rehren and Schroer’s

definition of exchange algebra [3] and Buchholz–Mack–Todorov definition of the KMS
condition in the context of conformal quantum field theories [4]. In section 3 we apply
these ideas to theZ2N chiral conformal field theories. Finally in section 4 we explain the
relationship between the KMS matrices and those satisfying the Verlinde algebra.

2. Exchange algebra and the KMS condition in conformal quantum field theories

2.1. Exchange algebra in conformal quantum field theories

Due to the non-additivity of conformal scale dimensions, the spectrum decomposition of
local fields8(x), with respect to the centre of the conformal group is non-trivial [5],

8(x) =
∑

η

8η(x) (2.1)

where every8η(x) is a non-local object withη-dependent complex phases that occur in
the special conformal transformation laws. The range of the labelη is determined by the
selection rules of scale dimensions.
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Applied to the vacuum state, the fields of a conformal block [α] generate a representation
sectorHα of the stress–energy tensor field. Applied to a state inHβ , fields of a conformal
block [α] give us contributions in all spaceHγ allowed by the fusion rules. Introducing
orthogonal projectorsPβ on the sectorsHβ one obtains the decomposition

8α(x) =
∑
β,γ

Pγ 8α(x)Pβ ≡ (8α)γβ(x). (2.2)

This decomposition coincides with the spectral decomposition (2.1) with the previous label
η replaced ‘fusion channels’ for the ‘charge’α.

It is a well established fact that conformal field theories can be constructed on Hilbert
spaces which are direct sums of irreducible representations of an observable algebraA⊕ Ā.
Both subalgebrasA ⊕ 1 and 1 ⊕ Ā are associated to one light-cone and are unitary. We
also add the further requirement that the Hilbert space contains only a finite number of
irreducible representations ofA and Ā. Hence

H =
⊕
α,ᾱ

Hα ⊗ Hᾱ (2.3)

whereHα (Hᾱ) are irreducible representations ofA (Ā) and the pair(α, ᾱ) takes its values
in a finite set.

Due to the light-cone factorization of the stress–energy tensor field algebra, the label
[α] of conformal blocks are in fact pairs [α+, α−]. Both representation sectors and the
projectors factorize into the projected fields

(8α)γβ(x) = (Aα+)γ+β+(x+) ⊗ (Aα−)γ−β−(x−). (2.4)

Finally, the monodromy properties of the conformal blocks are equivalent to the exchange
algebra on either light-cone

(Aα1)δγ (x)(Aα2)γβ(y) =
∑
γ ′

[R(δ,β)

(α1,α2)
(s)]γ γ ′(Aα2)δγ ′(y)(Aα1)γ ′β(x). (2.5)

Here (and from now on) we have omitted the indices ‘±’. The numerical structure constants
R are matrices which satisfy three basic properties (see [3]).

(i) [R(δ,β)

(α1,α2)
(s)] depend onx and y only through their relative position. This follows

from translation and scale variance. Moreover, ifs = sign(x − y) = ±, then

[R(δ,β)

(α1,α2)
(+)]−1 = R

(δ,β)

(α1,α2)
(−). (2.6)

(ii) Phase condition. R
(δ,β)

(α1,α2)
andR

(δ,β)

(α2,α1)
are related through the following relation∑

γ ′
[R(δ,β)

(α1,α2)
(s)]γ γ ′ [R(δ,β)

(α2,α1)
(s)]γ ′γ ′′ exp(2iπ(hγ + hγ ′ − hδ − hβ) = δγ,γ ′′ (2.7)

wherehγ s are primary dimensions of the representations [γ ]. This follows from invariance
under special conformal transformation.

(iii) Braid relations. The exchange matrices satisfy∑
β ′′

1

[R(β0,β2)

(α1,α2)
(s)]β1β

′′
1
[R

(β ′′
1 ,β3)

(α1,α3)
(s)]β2β

′′
2
[R

(β0,β
′
2)

(α2,α3)
(s)]β ′′

1 β ′
1

=
∑
β ′′

2

[R(β1,β2)

(α2,α3)
(s)]β2β

′′
2
[R

(β0,β
′′
2 )

(α1,α3)
(s)]β1β

′
1
[R

(β ′
1,β3)

(α1,α2)
(s)]β ′′

2 β ′
2

(2.8)

which is the consistency relation for the associativity of the exchange algebra (2.5).
All these relations were derived in [6] from the theory of localized endomorphism

without invoking conformal invariance.
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2.2. The KMS condition in conformal quantum field theories

Here we shall exploit the well known correspondence between finite size Euclidean theories
and finite positive temperature quantum field theories in a Minkowski space to formulate a
physical condition, namely the Kubo–Martin–Schwinger (KMS) boundary condition. The
KMS condition can be used to evaluate finite temperature correlation functions of fields
which satisfy simple algebraic commutation relations. In the case of conformal fields it can
be combinated with a small distance operator product to compute the partition function of
the system.

In the context of conformal field theories, the KMS condition was first explored by
Buchholzet al [4].

A Gibbs equilibrium state of inverse temperatureβ, 〈◦〉β (KMS state), is characterized
in the following way. For any two elementsA and B of a field algebra and for a given
time evolution automorphismαt , the functions〈Aαt(B)〉β and 〈αt(B)A〉β with t ∈ R

can be regarded as boundary values of an analytic function〈Aαζ (B)〉β . This function
is holomorphic in the strip 0< Im ζ < β, due to energy positivity, and satisfies the KMS
boundary condition

〈Aαt+iβ(B)〉β = 〈αt(B)A〉β (2.9)

where the time-evolution automorphismαt is defined by

αt(A) = eiHtAe−iHt . (2.10)

If e−βH is a trace-class operator, in the sense that the partition function

Z = Tr(e−βH ) (2.11)

is well defined, then〈A〉β is given by the density matrix

〈A〉β = 1

Z(β)
Tr(e−βHA). (2.12)

H is bounded below and the trace is carried over the eigenstates ofH .
For conformal field models,H will be replaced by the conformal HamiltonianL0 + L̄0

and we will be dealing with representations for which the trace (2.11) does exist.
Relation (2.9) can be used for the computation of the possible finite-temperature states if

there is a simple algebraic relation between the operatorsαt(B)A andAαt(B). For example,
let the commutator of these operators be a multiple of the identityC(t)1. Then one rewrites
relation (2.9) according to

〈Aαt+iβ(B)〉β = 〈[αt(B), A]〉β + 〈Aαt(B)〉β = C(t) + 〈Aαt(B)〉β (2.13)

where we have used the fact that〈1〉β = 1. Consequently one obtains an inhomogeneous
functional equation for the functiont → 〈Aαt(B)〉β , and this equation can be solved
straightforwardly by Fourier transformation [7].

In the case of the Virasoro algebra or Kac–Moody algebras the commutator of the basic
fields is not ac-number, but it is linear in these fields. Therefore, the first equation in (2.13)
provides a recursive relation between then-point function and the(n − 1)-point functions
which can likewise be solved for these models.

If A andB are commuting operators (bosonic at different localization points) the KMS
condition becomes simply the periodic condition in the imaginary direction. For operators
with braid-group commutation relations, the KMS condition leads to a non-trivial matrix
‘quasi-periodic’.
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In the light-cone field theory we have a simple algebraic relation between the operators
Aαt(B) and αt(B)A, the exchange algebra for chiral fields [1], so one obtains the KMS
condition on a light-cone. To be more explicit let us use the compact picture [8].

The compact picture of the stress–energy tensor, sayT (x+) → T (α) (x+ = 2i tan(πα)),
has the following Laurent expansion:

T (α) =
∑
n∈Z

L̃ne−2iπnα L̃n = Ln − c

24
δn,0. (2.14)

In order to compute the KMS states one can use the factorized form of the local field
8(α, ᾱ) in terms of interpolating fields, equation (2.4). This is done by considering the 2-
point function〈8(α, ᾱ)8(0, 0)〉β as a product of two chiral〈A(α)A(0)〉β and〈A(ᾱ)A(0)〉β
KMS states, i.e.

〈A(α)A(0)〉β = Tr(e−βL̃0A(α)A(0))

Z̃(β)
(2.15)

whereZ̃(β) is the chiral partition function

Z̃(β) = Tr(e−βL̃0) L̃0 = L0 − c

24
. (2.16)

Using the orthogonal projectors we can write

Z̃(β)
∑
λ,λ′

〈PλA(α)Pλ′A(0)Pγ 〉 =
∑
λ,λ′

Tr(e2iπτL̃0PλA(α)Pλ′A(0))

=
∑
λ,λ′

Fλλ′(α | τ) (2.17)

where we have introduced a new variableτ through the relation 2iπτ = −β.
In the compact picture the analytically continued time evolution automorphism of the

field A(α) is given by

αiβ(A(α)) = A(α + τ). (2.18)

Therefore we can write the KMS condition as∑
λ,λ′

Tr(e2iπτL̃0PλA(α + τ)Pλ′A(0)) =
∑
λ,λ′

Tr(e2iπτL̃0Pλ′A(0)PλA(α)). (2.19)

In order to exhibit the functional equations for the chiral KMS states we use the exchange
algebra (2.5) and equation (2.17) to write (2.19) as

Fλλ′(α + τ |τ) =
∑
λ′′

[R(λ′,λ′)(±)]λλ′′Fλλ′′(α|τ) (2.20)

where the indicesλ, λ′, λ′′ are labelling irreducible representations (sectors) of some chiral
algebra which satisfy certain fusion rules.

Next, we consider the action of the centre of the conformal group, generated by
Z = exp(2iπL0), on the primary fieldA(α) [3]

ZPλA(α)Pλ′Z−1 = e2iπ(hλ′ −hλ)PλA(α)Pλ′ . (2.21)

This provides us with another set of functional equations for the KMS states

Fλλ′(α + 1|τ) = e2iπ(hλ′ −hλ)Fλλ′(α|τ). (2.22)

Therefore, knowing the exchange matricesR and the conformal dimensionshλ, we can (in
principle) compute the KMS states by solving the functional equations (2.20) and (2.22).
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3. The Z2N chiral conformal model—a simple application

This model is perhaps the simplest chiral conformal quantum field theory with non-trivial
modular properties. Here we will consider it as a simple illustration of the applicability of
the program described in the previous section.

3.1. Z2N exchange algebra

There exists a natural way to generate some fusion rules from finite group theory [9]. Let us
considerG a finite group, it has a finite number of inequivalent irreducible representations
which we denote by5α. Any tensor product of them can be decomposed into irreducible
representations

5α ⊗ 5β = ⊕γ (Nα)
γ

β5γ (3.1)

where(Nα)
γ

β is the multiplicity of the5γ representation. Thanks to the associativity and
commutativity of the tensor product, theNα ’s define a representation of a commutative
and associative algebra, the fusion algebra. In the corresponding field theory, with each
irreducible representation ofG, we associate a primary field such that(Nα)

γ

β of finite group
theory gives us the fusion algebra of the underlying field theory. Naturally, the trivial
representation ofG is associated with the identity operator and the conjugate irreducible
representations ofG are associated with conjugate fields. In this case we obtain a special
family of braid group representations with integer statistical dimensions, but possible non-
trivial statistic phases. In conformal models, the statistical dimensions are known as the
normalized entriesS0p/S00 of the modular matrix, measuring the relative dimension of the
representation of the chiral algebra [10, 11].

If G is a finite Abelian group (say,ZN group) its irreducible representations are one-
dimensional and are labelled by the elements ofZN . In this case,(Nα)

γ

β = δ
γ

α+β with
α, β, γ = 0, 1, . . . , N − 1. Thus the fusion algebra is

[α][β] = [α + β]. (3.2)

Now consider the following set of conformal familiesF = [8α], α = 0, 1, . . . , N − 1,
together with the following fusion rules [8v1][8v2] = [8v1+v2]. Any family of F is generated
by the operator product expansion of fields belonging to the family [81]. The exchange
algebra of any field inF can then be obtained from those of the field81, which plays a
similar role to the field8(1,2) in the SU(2) minimal models considered by Rehren [1].

Let us now introduce the notationAv+α,α(x) = Pv+αA(x)Pv for the intertwining field
between the sectors [v] and [v + α], wherev = 0, 1, . . . , N − 1 andα ∈ Z. Now we recall
(2.5) and define the following exchange algebra

Pv0A(x)Pv0+α1A(y)Pv0+α1+α2

=
∑
v′

[R(v0,v0+α1+α2)

(α1,α2)
(±)]v0+α1,v′Pv0A(y)Pv′A(x)Pv0+α1+α2. (3.3)

The fusion rules (3.2) implyα1 = −α2 = α and the sum inv′ has only one term, i.e.
v′ = v0 + α2 and we have for the elementary field(α = 1) the following R matrices

[R(v,v)

(1,1̄)
]v−1,v+1 = [R(v,v)

(1̄,1)
]v+1,v−1 = η (3.4)

for v = 1, 2, . . . , N − 2. Forv = 0 and forv = N − 1 we define

[R(0,0)

(1,1̄)
]1,1 = [R(N−1,N−1)

(1,1̄)
]N−2,N−2

.= η (3.5)
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where η is a phase factor which will be found from the phase condition (2.7) and the
normalization of the 2-point function. The braid matrices do not depend onv and the phase
condition can be written as

exp(2iπ(hv−1 + hv+1 − 2hv)) = η−2 (3.6)

which yields the constraint

η−2N = 1. (3.7)

From the 2-point functionA01(x)A10(y)
.= ηA01(y)A10(x), we have

η−1 = exp(2iπh1) (3.8)

and we also impose thath0 = 0 andhN−v = hv. So the general solution of (3.6) with the
constraint (3.7) is given by

hv = ν2h1 = ν2

4N
v = 0, 1, . . . , 2N − 1. (3.9)

A systematic investigation of the fullZN spectrum was made by Degiovanni [2]. He
showed that the solutions (3.9) can also be derived from the equation(ST )3 = 1, where
S andT are matrices representing the modular group, in agreement with Verlinde algebra
[12].

Now we can discuss a solution to the KMS condition equations (2.20) and (2.22), which
turns out to be the KMS states forZ2N chiral conformal field theories. From the exchange
algebra forZ2N models equations (3.3) and (3.4), we have the following equations,

Fλ,λ+1(α + τ |τ) = ηFλ+1,λ+2(α|τ)

Fλ,λ+1(α + 1|τ) = exp(2iπ(hλ+1 − hλ))Fλ,λ+1(α|τ) (3.10)

whereλ = 0, 1, . . . , N − 1 andFN−1,N (α|τ) = FN−1,0(α|τ), and the dimensionshv are
given by (3.9). We now proceed to the solution of these functional equations.

Fλ,λ+1(α|τ) = 1

η(τ)

[
2iπ

θ1(α|τ)

θ ′
1(0|τ)

]−1/2N ∑
l∈Z

qN(l+λ/2N)2
e2iπ(l+λ/2N)α

FN,N+1(α|τ) = FN,1−N(α|τ) (3.11)

where θ1(α|τ) (θ ′
1(α|τ) = ∂θ1(α|τ)/∂α) is the first Jacobi theta function,η(τ) is the

Dedekindη-function andq = e2iπτ . Here we have used the fact thathv (3.9) is defined
mod 2N in order to label theZ2N irreducible representations byλ = 1− N, 2− N, . . . , N .
Equations (3.10) can also be written in a compact matricial form

F(α + τ |τ) = S̃F(α|τ) F(α + 1|τ) = T̃ F(α|τ) (3.12)

where the chiral componentsFλ,λ+1 are indexed as elements of the matrix columnF and

S̃ = (S̃)λλ′ = ηδλ,λ′+1 T̃ = (T̃ )λλ′ = η−1ωλδλ,λ′

λ, λ′ = 1 − N, 2 − N, . . . , N. (3.13)

Both S̃ andT̃ matrices are defined mod 2N . Note also thatη−1S̃, ηT̃ andω = exp(−iπ/N)

define a representation of the Heisenberg group similar to that used by Capelli–Itzykson–
Zuber [11] and Gepner–Qiu [13]. We shall callS̃ and T̃ as KMS matrices for theZ2N

chiral conformal models.
In [4], Buchholz, Mack and Todorov (BMT) derived a way of computing the characters

of theZ2N models by exploiting the KMS condition for Gibbs states in the algebra of fields
or observables.
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Here we can only sketch the comparisons of (3.11) with the KMS 2-point function
ωβ(9−g(0)9g(t)) on the algebraAN where9g ∈ AN is any unitary field operator with
chargeg = ρ[1] = √

2N . The reader can find the details in [4].
Using the BMT approach we derived the following KMS 2-point function

ωβ(9−g(0)9g(t))λ =
[

2iπ
θ1(α|τ)

θ ′
1(0|τ)

]−g2

22λ,g2(tg, τ, 0)

22λ,g2(0, τ, 0)
(3.14)

where we used the classical2-function

2l,g2(t, τ, u) = e2iπu
∑
n∈Z

eiπτ(ng+l/g)2+2iπt(ng+l/g).

We can proceed by taking the limitt → 0 of (3.14), which gives

ωβ(9−g(0)9g(t))λ
t→0∼ [2i sin(t/2)]−g2

{
1 + igt

∑
n(ng + λ/g)e−β(ng+λ/g)2/2∑

n e−β(ng+λ/g)2/2

+g2t2 ∂

∂β
ln

[∑
n e−β(ng+λ/g)2/2

5n(1 − e−nβ)

]
+ · · ·

}
. (3.15)

Comparing (3.15) with the short distance operator product expansion [4],

9−g(0)9g(t) = [2i sin(t/2)]−g2{1 + [2i sin(t/2)]J (t) + [2i sin(t/2)]2T (t)}
whereT (t) = L0 − c/24+ ∑

n6=0 Lne−nt is the stress tensor, we get

ωβ(T (t)) = ωβ(L0) = − ∂

∂β
ln

[∑
n∈Z e−β(ng+λ/g)2/2

5∞
n=1(1 − e−nβ)

]
.

On the other hand,

ωβ(L0) = − ∂

∂β
ln[e−β/24Zλ(β)]

and we obtain the following expression for the chiral partition function:

Zλ(β) =
∑

n∈Z e−β(ng+λ/g)2/2

e−β/245∞
n=1(1 − e−nβ)

.

This result for the partition function is proportional to a ratio of a classical2-function and
a Dedekindη-function.

Finally we observe that the fields9g(t) in (3.14) are related to the elementary fields
A(α) (t = 2iπα) in (3.11) by a Klein transformation [4], so one can put the complete
expression (3.14) into a form which can be compared with the equation (3.11).

4. Verlinde’s algebra from KMS modular properties

Before we start to study the modular properties of the KMS states let us recall some basic
facts about Verlinde’s works [12, 14]. The main tool is the fusion algebra. It is defined as
the associative algebra

8i × 8j = Nk
ij8k (4.1)

where the non-negative integerNk
ij is the number of independent couplings of the type

(ijk). Since (4.1) is also commutative, it hasN irreducible one-dimensional representations
λ

(n)
i , n = 1, . . . , N ,
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λ
(n)
i λ

(n)
j = Nk

ijλ
(n)
k (4.2)

which are given by the eigenvalues of the matrices(Ni)
k
j .

There is a remarkable relation between the fusion algebra and the modular properties
of the one-loop characters: the matrixS describing the behaviour underτ → −1/τ

diagonalizes the fusion algebra. More precisely it expresses the one-dimensional
representationλ(j)

i and the integersNijk in terms ofS as

λ
(j)

i = Sij

S0j

and Nijk =
∑

n

SinSjnSnk

S0n

. (4.3)

One can refer to [14] for a proof of these relations.
An important application of relation (4.3) concerns the evaluation of possible values

of c (central charge) andh (conformal dimension) for a given fusion algebra. We also
stress that the condition ‘S is symmetric’ is absolutely necessary if we want this matrix
to represent both the modular properties of some characters and the monodromy matrix
[5].

To derive the modular properties of the functionsFλ,λ+1(α|τ) for Z2N conformal models
we apply the same procedure used in [4].

The 2N functionsFλ,λ+1(α|τ), λ = 1−N, . . . , N span a 2N -dimensional representation
of the modular groupSL(2, Z), which acts on the variables(α, τ ) according to

(α, τ ) → (αG, τG)

αG = α τG = aτ + b

cτ + d

whereG−1 is the 2× 2 matrix with integer entriesa, b, c, d ∈ Z, ad − bc = 1.
It is sufficient to consider the transformation properties ofFλ,λ+1(α|τ) for the two

generators ofSL(2, Z)

T : τ → τ + 1 S : τ → − 1

τ
(4.4)

satisfying

S2 = (ST )3. (4.5)

First we note that the function appearing inFλ,λ+1(α|τ) is the Dedekindη-function

η(τ) = e2iπτ/24
∞∏

n=1

(1 − e2iπnτ ) (4.6)

and

θ1(α|τ) =
∑
n∈Z

eiπ(n−1/2)2τ+2iπ(n−1/2)(α−1/2) (4.7)

is the first Jacobiθ -function. Consequently, under the transformationT

Fλ,λ+1(α|τ + 1) = eiπ((λ2/2N)−1/12)Fλ,λ+1(α|τ) = TλλFλ,λ+1(α|τ) (4.8)

and under the transformationS, using the Poisson formula

∞∑
n=−∞

f (n) =
∞∑

p=−∞

∫
dx f (x)e2iπpx (4.9)
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we obtain

Fλ,λ+1

(
α

∣∣∣∣ − 1

τ

)
= τ 1/2N 1√

2N

N∑
λ′=1−N

e−iπ λλ′
N Fλ′,λ′+1(ατ |τ)

.= τ 1/2N
N∑

λ′=1−N

Sλλ′Fλ′,λ′+1(ατ |τ). (4.10)

In other words the action ofT is diagonal, being the multiplication by exp(2iπλ2/4N −
1/24), while the action ofS is nothing but the finite Fourier transform over integers modulo
2N .

To obtain the partition function [11] from the 2-point functionFλ,λ+1(α|τ), we proceed
as in the previous section, taking the limitα → 0 in (3.11) (expansion aroundα = 0)
and compare with the expected value of the operator product expansion of the quantum
fields (short-distance limit ofA(α)A(0)). Since the irreducible representations ofZ2N can
be labelled byλ = 1 − N , 2 − N, . . . , N we will denote the corresponding representation
space byHλ. Thus, the chiral partition function of theZ2N conformal models is given by

Zλ(β) = TrHλ
(e−βL0) = 1

η(τ)

∑
l∈Z

qN(l+λ/2N)2 .= χλ(τ). (4.11)

Therefore, equations (4.8) and (4.10) state that the modular properties ofFλ,λ+1(α|τ)

coincide with the modular properties of the corresponding charactersχλ(τ) (multiplied
by e2iπα) [4].

We note that the characters obey the periodic condition

χλ+2N(τ) = χλ(τ) (4.12)

and
N∑

λ′=1−N

Cλλ′χλ′(τ ) = χλ(τ) = χ−λ(τ ) (4.13)

whereC = S2 is theZ2N -charge conjugation matrix.
The fact that it is possible to find the charactersχλ(τ) from the functionsFλ,λ+1(α|τ)

suggests that there is a hidden relationship between the KMS matrices(S̃, T̃ ) and the
matrices(S, T ), the representing matrices of the modular group. Actually, using the KMS
condition we can write from (4.10)

F
(

α − 1

τ

∣∣∣∣ − 1

τ

)
= τ 1/2NSF(ατ − 1|τ)

= τ 1/2NST̃ F(ατ |τ)

= τ 1/2N(ST̃ ∗S∗)SF(ατ |τ). (4.14)

But, sinceF(α − 1/τ | − 1/τ) = S̃F(α| − 1/τ), we obtain

S̃ = ST̃ ∗S∗.

Similarly

T̃ = T T̃ T ∗

as expected; sincẽT and S̃ act onα andT andS act onτ , the two variables ofF , these
actions have to commute. Finally we recall (3.13) to remember that theT̃ and S̃ matrices
satisfy the relation(S̃T̃ )2N = ωN1, whereω = exp(−2iπ/2N), which is consistent with
the modular constraint(ST )3 = S2.
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With these expressions we have achieved our goal to determine the modular properties
of the characters in terms of the KMS boundary condition and the centre of the conformal
group. From the fusion rules we have also constructed the KMS matrixS̃ (exchange matrix
elements) which can be diagonalized by the modular matrixS. We believe that this case
gives an illustration of the general case.
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